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GROUP DYNAMICS IN OPINION FORMATION

Opinions are seldomly formed in isolation, but rather through interac-
tions with others in society.

Besides pairwise interactions between individuals, group dynamics
may play an integral part in opinion formation due to each individual’'s
striving for conformity (bandwagon effect, peer-pressure ...).

Source: cottonbro studio


https://www.pexels.com/@cottonbro

GROUP DYNAMICS IN OPINION FORMATION
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“The tendency to conformity in our society is so strong that
reasonably intelligent and well-meaning young people are
willing to call white black.” (solomon Asch, 1955)

Source: cottonbro studio


https://www.pexels.com/@cottonbro

HYPERGRAPH ADAPTIVE VOTER MODEL

We generalise the (classical) adaptive voter
model and use a hypergraph to encode e
polyadic interactions.

Adaptation: rewire-to-same or rewire-to-random.
Propagation: proportional voting or majority voting.



HYPERGRAPH ADAPTIVE VOTER MODEL: DYNAMICS
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HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD DESCRIPTION FOR K > 2
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HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD TRAJECTORIES
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HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD MAGNETISATION
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In equilibrium, there may be only local consensus 71>92

(through fragmentation) or no consensus at all.
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In equilibrium, there is always global consensus.



HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD MAGNETISATION

Proportional voting
Since na(4, b) = ﬁ and ng(4, b) = fﬁ,
£ =0.

In equilibrium, there may be only local consensus
(through fragmentation) or no consensus at all.
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AD-HOC MODELLING OF GROUP DYNAMICS IN THE ADAPTIVE VOTER MODEL

A measure for the influence of the additional
hypergraph structure is the probability that a
randomly chosen edge is not contained in any
of the hyperedges,
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SCENARIO 1: STABILISING THE TOPOLOGY

Assumption: Rewiring only succeeds if the 0.4 ;
active egde is not contained in any of the ’
groups given by the hyperedges.
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Hence, p. — 1 exponentially fast as the hy-
peredges become larger and/or more. P

The inclusion in (social) groups prevents the topology from fragmentation, emphasising the importance
of family or friendship groups for the functioning of a society.



SCENARIO 2: INTRODUCING BIAS TOWARDS MAJORITY OR MINORITY

Assumption: When contained in any of the

i . Convergence time
groups given by the hyperedges, propagation

s
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Even the slightest institutional (majority) mistrust manifesting itself in a minority bias promoted by (so-
cial) groups leads to a functioning yet deeply divided society with no (stable) majority.



CONCLUSIONS

— We have argued that it may be crucial to take group dynamics into account when study-
ing opinion formation.

— We have shown how to define a proper generalisation of the classical adaptive voter
model for polyadic interactions, presented a mean-field description, and discussed how
different dynamics may affect consensus formation.

— We have discussed two low-dimensional ad-hoc models where polyadic interactions
lead to interesting societal effects.
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BISTABILITY IN THE ADAPTIVE VOTER MODEL

In the phase space given by the simplicial cylinder
A trivial equilibrium (u, (1—0)M, OM) is (linearly) sta-
[—1,+1] x {x e R : x > O A ||x]||y < M}, ble if

the trivial equilibria form the manifold (1 =B — (20 = 1)) o1 1-3p 1

1— 2 1—p (k)

[-1,+1] x {x €RZ : x> O A ||x]|1 = M}.
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