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GROUP DYNAMICS IN OPINION FORMATION

Opinions are seldomly formed in isolation, but rather through interac-
tions with others in society.

Besides pairwise interactions between individuals, group dynamics
may play an integral part in opinion formation due to each individual’s
striving for conformity (bandwagon effect, peer-pressure ...).
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GROUP DYNAMICS IN OPINION FORMATION
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“The tendency to conformity in our society is so strong that
reasonably intelligent and well-meaning young people are

willing to call white black.” (Solomon Asch, 1955)

Source: cottonbro studio

https://www.pexels.com/@cottonbro


HYPERGRAPH ADAPTIVE VOTER MODEL

We generalise the (classical) adaptive voter
model and use a hypergraph to encode
polyadic interactions.
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Adaptation: rewire-to-same or rewire-to-random.
Propagation: proportional voting or majority voting.



HYPERGRAPH ADAPTIVE VOTER MODEL: DYNAMICS
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Majority voting
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HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD DESCRIPTION FOR K ≥ 2



˙[A] = (1 − p)

[ ∑
(â,b̂)∈N2

â+b̂≤K

[AâBb̂ ](b̂ ηA(â, b̂) − â ηB(â, b̂))

]

˙[B] = (1 − p)

[ ∑
(â,b̂)∈N2

â+b̂≤K

[AâBb̂ ](â ηB(â, b̂) − b̂ ηA(â, b̂))

]

˙[AaBb ] = p

[
a + 1

a + b + 1
[Aa+1Bb ] 1

N2∩B̄1
K (0)

(a + 1, b) +
b + 1

a + b + 1
[AaBb+1] 1

N2∩B̄1
K (0)

(a, b + 1) − [AaBb ] 1
N2∩B̄1

K (0)
(a, b)

+
∑

(â,b̂)∈N2

â+b̂≤K

[AâBb̂ ]

(
â

â + b̂
(πA(a − 1, b) − πA(a, b)) +

b̂

â + b̂
(πB(a, b − 1) − πB(a, b))

)]

+ (1 − p)

[ ∑
(â,b̂)∈N2

â+b̂≤K

ηA(â, b̂)

( ∑
0≤α≤â
1≤β≤b̂

...

(1 + δâ,a−βδb̂,b+β )[Aâ−αBb̂−β (AαBβ )Aa−α−βBb ] −
∑

0≤α≤â
1≤β≤b̂

...

(1 + δâ,aδb̂,b )[Aâ−αBb̂−β (AαBβ )Aa−αBb−β ]

)

+
∑

(â,b̂)∈N2

â+b̂≤K

ηB(â, b̂)

( ∑
1≤α≤â
0≤β≤b̂

...

(1 + δâ,a+αδb̂,b−α
)[Aâ−αBb̂−β (AαBβ )AaBb−α−β ] −

∑
1≤α≤â
0≤β≤b̂

...

(1 + δm,aδb̂,b )[Aâ−αBb̂−β (AαBβ )Aa−αBb−β ]

)

+
∑

1≤α≤a−1
ηA(a − α, α)[Aa−αBα ] δb,0 +

∑
1≤β≤b−1

ηB(β, b − β)[AβBb−β ] δa,0 − [AaBb ] 1
N2∩B̄1

K (0)
(a, b)

]
for a, b ∈ N, a + b ≤ K .



HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD TRAJECTORIES

Proportional voting
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Majority voting
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HYPERGRAPH ADAPTIVE VOTER MODEL: MEAN-FIELD MAGNETISATION

µ̇ =
2(1 − p)

N

∑
(â,b̂)∈N2

â+b̂≤K

[AâBb̂ ] (â ηB(â, b̂) − b̂ ηA(â, b̂))

Proportional voting

Since ηA(â, b̂) = â
â+b̂

and ηB(â, b̂) = b̂
â+b̂

,

µ̇ = 0.

In equilibrium, there may be only local consensus
(through fragmentation) or no consensus at all.

Majority voting
Since ηA(â, b̂) = Θ(â − b̂) and ηB(â, b̂) = Θ(b̂ − â),

µ̇ =
2(1 − p)

N

∑
σ∈N2,|σ|≤K

σ1>σ2

σ2 ([Aσ2 Bσ1 ] − [Aσ1 Bσ2 ]).

If µ
(>)
< 0, [Aσ2 Bσ1 ] − [Aσ1 Bσ2 ]

(>)
< 0 and hence

µ̇
(>)
< 0.

In equilibrium, there is always global consensus.



AD-HOC MODELLING OF GROUP DYNAMICS IN THE ADAPTIVE VOTER MODEL

We use a hypergraph to encode polyadic in-
teractions in the sense that we consider an un-
derlying network covered by Mg hyperegdes
of size g.

A measure for the influence of the additional
hypergraph structure is the probability that a
randomly chosen edge is not contained in any
of the hyperedges,

qg,Mg =

1 −

(N−2
g−2

)
(N

g

)
Mg

≈ e− Mg
N2 g(g−1).
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SCENARIO 1: STABILISING THE TOPOLOGY

Assumption: Rewiring only succeeds if the
active egde is not contained in any of the
groups given by the hyperedges.

1
p∗

= 1 +
1 + µ2

2(〈k〉 − 1)
qg,Mg

Hence, p∗ → 1 exponentially fast as the hy-
peredges become larger and/or more.
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The inclusion in (social) groups prevents the topology from fragmentation, emphasising the importance
of family or friendship groups for the functioning of a society.



SCENARIO 2: INTRODUCING BIAS TOWARDS MAJORITY OR MINORITY

Assumption: When contained in any of the
groups given by the hyperedges, propagation
occurs with a bias towards promoting majority
or minority opinion.

µ̇ = (1 − p)
2(1 − qg,Mg )β

N
µ [AB]

Hence, in any non-trivial equilibrium, neces-
sarily µ = 0 and β ≤ 0.
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Even the slightest institutional (majority) mistrust manifesting itself in a minority bias promoted by (so-
cial) groups leads to a functioning yet deeply divided society with no (stable) majority.



CONCLUSIONS

→ We have argued that it may be crucial to take group dynamics into account when study-
ing opinion formation.

→ We have shown how to define a proper generalisation of the classical adaptive voter
model for polyadic interactions, presented a mean-field description, and discussed how
different dynamics may affect consensus formation.

→ We have discussed two low-dimensional ad-hoc models where polyadic interactions
lead to interesting societal effects.
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Thank you!
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BISTABILITY IN THE ADAPTIVE VOTER MODEL
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In the phase space given by the simplicial cylinder

[−1, +1] × {x ∈ R2 : x ≥ 0 ∧ ‖x‖1 ≤ M},

the trivial equilibria form the manifold

[−1, +1] × {x ∈ R2 : x ≥ 0 ∧ ‖x‖1 = M}.

A trivial equilibrium (µ, (1−θ)M, θM) is (linearly) sta-
ble if

−
(1 − β̂)µ(µ− (2θ − 1))

1 − µ2
> 1 −

1 − 1
2 p

1 − p
1
〈k〉

.
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