# **Preserving Bifurcations through Moment Closures**

Jan Mölter, *Technical University of Munich*; jointly with Christian Kuehn 11<sup>th</sup> July 2023

International Conference on ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ – Workshop: Complex Networks - Hidden Geometry and Dynamics



## **MOMENT SYSTEMS & MOMENT CLOSURES**

Moment systems are generically given as infinite-dimensional systems of the form

$$\dot{x}_1 = f_1(x_1, x_2, \dots x_{\kappa}, x_{\kappa+1}, \dots) 
\dot{x}_2 = f_2(x_1, x_2, \dots x_{\kappa}, x_{\kappa+1}, \dots) 
\vdots = \vdots$$

A (moment) closure relation for some  $\kappa \in \mathbb{N}$  is a mapping H such that

$$H(x_1,x_2,\dots x_\kappa)=(x_{\kappa+1},x_{\kappa+2},\dots).$$

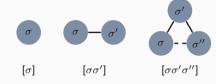
Through applying the closure relation, the original system is rendered the closed, finite-dimensional system

$$\dot{x}_{1} = f_{1}(x_{1}, x_{2}, \dots x_{\kappa}, H(x_{1}, x_{2}, \dots x_{\kappa})) 
\dot{x}_{2} = f_{2}(x_{1}, x_{2}, \dots x_{\kappa}, H(x_{1}, x_{2}, \dots x_{\kappa})) 
\vdots = \vdots 
\dot{x}_{\kappa} = f_{\kappa}(x_{1}, x_{2}, \dots x_{\kappa}, H(x_{1}, x_{2}, \dots x_{\kappa}))$$

### MOMENT SYSTEMS IN NETWORK DYNAMICAL SYSTEMS

Network dynamical systems frequently admit a mean-field description of *network moments*.

These correspond to the expected number of certain motifs.



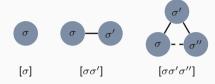
Assuming binary-state dynamics, up to order 2, these mean-field moment systems are generically given as

$$\begin{split} & [\dot{\sigma_1}] = f_{[\sigma_1]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ & [\dot{\sigma_2}] = f_{[\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ & [\sigma_1\dot{\sigma_1}] = f_{[\sigma_1\sigma_1]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ & [\sigma_1\dot{\sigma_2}] = f_{[\sigma_1\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ & [\sigma_2\dot{\sigma_2}] = f_{[\sigma_2\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \end{split}$$

### MOMENT SYSTEMS IN NETWORK DYNAMICAL SYSTEMS

Network dynamical systems frequently admit a mean-field description of *network moments*.

These correspond to the expected number of certain motifs.



Assuming binary-state dynamics, up to order 2, these mean-field moment systems are generically given as

$$\begin{cases} [\dot{\sigma_1}] = f_{[\sigma_1]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ [\dot{\sigma_2}] = f_{[\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ [\sigma_1\dot{\sigma}_1] = f_{[\sigma_1\sigma_1]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ [\sigma_1\dot{\sigma}_2] = f_{[\sigma_1\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \\ [\sigma_2\dot{\sigma}_2] = f_{[\sigma_2\sigma_2]}([\sigma_1], [\sigma_2], [\sigma_1\sigma_1], [\sigma_1\sigma_2], [\sigma_2\sigma_2], \dots, \lambda) \end{cases}$$

## THE SIS EPIDEMIC MODEL

The SIS epidemic is model for the spreading of a contagion without immunity.



$$\begin{cases} [\dot{S}] = [I] - \rho [SI] \\ [\dot{I}] = \rho [SI] - [I] \\ [\dot{S}] = 2[SI] - 2\rho [SSI] \\ [\dot{S}] = [II] - [SI] + \rho ([SSI] - [ISI] - [SI]) \end{cases}$$

## THE SIS EPIDEMIC MODEL

The SIS epidemic is model for the spreading of a contagion without immunity.



$$\begin{bmatrix} \dot{[S]} = [I] - \rho [SI] \\ [\dot{I}] = \rho [SI] - [I] \\ [\dot{SS}] = 2[SI] - 2\rho [SSI] \\ [\dot{SI}] = [II] - [SI] + \rho ([SSI] - [ISI] - [SI]) \\ [\dot{I}] = -2[II] + 2\rho ([ISI] + [SI]) \\ \end{bmatrix}$$

## MOMENT CLOSURES PRESERVING THE BIFURCATION IN THE SIS EPIDEMIC MODEL

### We consider the system

$$\begin{cases} [\dot{1}] = \rho[SI] - [I] \\ [\dot{S}I] = [II] - [SI] + \rho([SSI] - [ISI] - [SI]) \\ [\dot{I}I] = -2[II] + 2\rho([ISI] + [SI]) \end{cases}$$

subject to 
$$[S]+[I] = N$$
 and  $[SS]+2[SI]+$   
 $[II] = 2M$ 

and assume a closure relation H such that

$$([\mathsf{SSI}],[\mathsf{ISI}]) = H([\mathsf{I}],[\mathsf{SI}],[\mathsf{II}]).$$

#### Theorem

Assume that H is rational and that H([1], [S1], [1]) = 0 whenever [S1] = 0. Then H can be factorised so that  $H([1], [S1], [1]) = [S1] \tilde{H}([1], [S1], [1])$ . Moreover, suppose that  $\tilde{H}$  is at least twice continuously differentiable in a neighbourhood around 0 and that  $\frac{1}{\rho_{+}} = \tilde{H}^{([SS1])}(0) > 0$ . Then, if

$$\begin{split} \partial_{[1]} \tilde{H}^{([SSI])}(0) + \tilde{H}^{([SSI])}(0) \partial_{[SI]} \tilde{H}^{([SSI])}(0) \\ + (1 + \tilde{H}^{([ISI])}(0)) \partial_{[III]} \tilde{H}^{([SSI])}(0) \neq 0 \end{split}$$

In particular, provided that  $2\tilde{H}^{([SSI])}(0) + \tilde{H}^{([ISI])}(0) + 1 > 0$ , the

$$\begin{split} \partial_{[1]} \tilde{H}^{([SSI])}(0) + \tilde{H}^{([SSI])}(0) \partial_{[SI]} \tilde{H}^{([SSI])}(0) \\ + (1 + \tilde{H}^{([ISI])}(0)) \partial_{[II]} \tilde{H}^{([SSI])}(0) \stackrel{(>)}{<} 0 \end{split}$$

Proof: Application of the Crandall-Rabinowitz Theorem.

## MOMENT CLOSURES PRESERVING THE BIFURCATION IN THE SIS EPIDEMIC MODEL

We consider the system

$$\begin{cases} [\dot{I}] = \rho [SI] - [I] \\ [\dot{S}I] = [II] - [SI] + \rho ([SSI] - [ISI] - [SI]) \\ [\dot{I}\dot{I}] = -2[II] + 2\rho ([ISI] + [SI]) \end{cases}$$

subject to 
$$[S]+[I] = N$$
 and  $[SS]+2[SI]+$   
 $[II] = 2M$ 

and assume a closure relation  $\boldsymbol{H}$  such that

$$([\mathsf{SSI}],[\mathsf{ISI}]) = H([\mathsf{I}],[\mathsf{SI}],[\mathsf{II}]).$$

#### **Theorem**

Assume that H is rational and that H([I], [SI], [II]) = 0 whenever [SI] = 0. Then H can be factorised so that  $H([I], [SI], [II]) = [SI] \tilde{H}([I], [SI], [II])$ . Moreover, suppose that  $\tilde{H}$  is at least twice continuously differentiable in a neighbourhood around 0 and that  $\frac{1}{\alpha} = \tilde{H}^{([SSI])}(0) > 0$ . Then, if

$$\begin{split} \partial_{[1]} \tilde{H}^{([SSI])}(0) + \tilde{H}^{([SSI])}(0) \partial_{[SI]} \tilde{H}^{([SSI])}(0) \\ + (1 + \tilde{H}^{([ISI])}(0)) \partial_{[III]} \tilde{H}^{([SSI])}(0) \neq 0, \end{split}$$

the closed systems exhibits a transcritical bifurcation at  $\rho$  =  $\rho_*$ .

In particular, provided that  $2\tilde{H}^{([SSI])}(0) + \tilde{H}^{([ISI])}(0) + 1 > 0$ , the bifurcation is supercritical (subcritical) if

$$\begin{split} \partial_{[l]} \tilde{H}^{([SSI])}(0) + \tilde{H}^{([SSI])}(0) \partial_{[SI]} \tilde{H}^{([SSI])}(0) \\ + (1 + \tilde{H}^{([ISI])}(0)) \partial_{[lI]} \tilde{H}^{([SSI])}(0) \overset{(>)}{<} 0. \end{split}$$

*Proof*: Application of the Crandall–Rabinowitz Theorem.

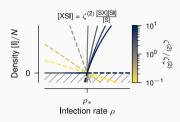
In case of the most frequently used closure

[XSI] = 
$$\zeta^{(2)} \frac{[XS][SI]}{[S]}$$
,

one obtains a transcritical bifurcation at  $\rho_* = \frac{N}{2\zeta^{(2)}M}$  that is supercritical if  $\zeta^{(2)} > \zeta_*^{(2)} \coloneqq \frac{1}{2}(1-\frac{N}{2M})$  and subcritical otherwise.

A similar result can be obtained for the closure ( $\phi \neq 1$ )

$$[XSI] = \zeta^{(2)} \frac{[XS][SI]}{[S]} \left( 1 - \phi \left( 1 - \zeta^{(1)} N \frac{[S][I][XI]}{([SS][I] + [S][II])[X][SI]} \right) \right)$$



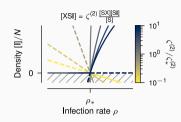
In case of the most frequently used closure

[XSI] = 
$$\zeta^{(2)} \frac{[XS][SI]}{[S]}$$
,

one obtains a transcritical bifurcation at  $\rho_*=\frac{N}{2\zeta^{(2)}M}$  that is supercritical if  $\zeta^{(2)}>\zeta_*^{(2)}\coloneqq\frac{1}{2}(1-\frac{N}{2M})$  and subcritical otherwise.

A similar result can be obtained for the closure ( $\phi \neq 1$ )

$$[\mathsf{XSI}] = \zeta^{(2)} \frac{[\mathsf{XS}][\mathsf{SI}]}{[\mathsf{S}]} \left( 1 - \phi \left( 1 - \zeta^{(1)} N \frac{[\mathsf{S}][\mathsf{I}][\mathsf{XI}]}{([\mathsf{SS}][\mathsf{I}] + [\mathsf{S}][\mathsf{II}])[\mathsf{X}][\mathsf{SI}]} \right) \right).$$



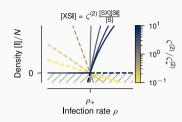
In case of the most frequently used closure

[XSI] = 
$$\zeta^{(2)} \frac{[XS][SI]}{[S]}$$
,

one obtains a transcritical bifurcation at  $\rho_*=\frac{N}{2\zeta^{(2)}M}$  that is supercritical if  $\zeta^{(2)}>\zeta_*^{(2)}\coloneqq\frac{1}{2}(1-\frac{N}{2M})$  and subcritical otherwise.

A similar result can be obtained for the closure ( $\phi \neq 1$ )

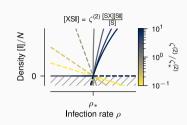
$$[\mathsf{XSI}]_{\delta} = \zeta^{(2)} \frac{[\mathsf{XS}][\mathsf{SI}]}{[\mathsf{S}]} \left( 1 - \phi \left( 1 - \zeta^{(1)} N \frac{[\mathsf{S}][\mathsf{I}][\mathsf{XI}]}{([\mathsf{SS}][\mathsf{I}] + [\mathsf{S}][\mathsf{II}])[\mathsf{X}][\mathsf{SI}] + \delta} \right) \right).$$



In case of the most frequently used closure

[XSI] = 
$$\zeta^{(2)} \frac{[XS][SI]}{[S]}$$
,

one obtains a transcritical bifurcation at  $\rho_* = \frac{N}{2\zeta^{(2)}M}$  that is supercritical if  $\zeta^{(2)} > \zeta_*^{(2)} \coloneqq \frac{1}{2}(1-\frac{N}{2M})$  and subcritical otherwise.



A similar result can be obtained for the closure ( $\phi \neq 1$ )

$$[\mathsf{XSI}]_{\delta} = \zeta^{(2)} \frac{[\mathsf{XS}][\mathsf{SI}]}{[\mathsf{S}]} \left( 1 - \phi \left( 1 - \zeta^{(1)} N \frac{[\mathsf{S}][\mathsf{I}][\mathsf{XI}]}{([\mathsf{SS}][\mathsf{I}] + [\mathsf{S}][\mathsf{II}])[\mathsf{X}][\mathsf{SI}] + \delta} \right) \right).$$



### CONCLUSIONS

- → An alternative approach to find moment closures is to focus on qualitative features that are to be preserved locally first.
- → We demonstrated this in the context of a paradigmatic network dynamical systems and derived rigorous conditions on a moment closure to produe the expected bifurcation.
- → This classification of "good" moment closures in a principled way provides rigorous and quantitative evidence for the validity of existing moment closures.

#### **Future work**

ightarrow Instead of only a single qualitative feature, we may combine several and this way further constrain "good" moment closures.





# Thank you!





