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TRANSPORT PROCESSES ACCELERATE EPIDEMIC DYNAMICS

Source: Jeffrey Young | zydeaøsika

Public transport transiently brings together people
in a confined space and as such provides a gen-
uine risk to spread contagions.

When modelling an epidemic, one classically con-
siders the epidemic dynamics on a static social net-
work. In contrast, transport dynamically generates
transient connection between people.

→ How can we incorporate transport into the classi-
cal epidemic network models and quantify its effect
e.g. on the epidemic threshold?

https://www.pexels.com/@zydeaosika-2261055
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AN EPIDEMIC NETWORK MODEL INCORPORATING TRANSPORT

Transport network (X ,A)Epidemic (multilayer) network
(
N ,
{
Ec., E t.})

Multiplex structure of simple networks, with a static
bottom (“community”) and a dynamic top (“trans-
port”) layer

→ standard epidemic dynamics (SIS, SIR, …)
across the entire multiplex

Simple, static network

→ independent Poissonian random walks of the in-
dividuals from the population N

→ the event that two individuals occupy the same
site generates a link between them in E t.



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2ND ORDER
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PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MICROSCOPIC LEVEL

Let Hn
t and X n

t denote the health and location of individual n at time t . If ht (x)
is the number of individuals in state h occupying site x at time t , then, for τ > 0
sufficiently small,

ht+τ (x) = ht (x) +
∑

n

(
δx ,Xn

t+τ
− δx ,Xn

t

)
δh,Hn

t
.

With that, if {h t.∼ h′}t (x) is the number of links between individuals in state h
and h′ occupying site x at time t ,

{h t.∼ h′}t (x) = ht (x)
(
h′

t (x) − δh,h′
)
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PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL

The generator of the random walk on the transport network is the Laplacian ∆ = 1− P so that

P
[

X n
t+τ = x ′∣∣X n

t = x ∧ Hn
t = h

]
= δx ,x′ − µτ∆(x , x ′) (1 + O(τ )) .

Hence, in expectation and the limit τ → 0,

∂t [h(x)]t = −µ
∑
x′

∆>(x , x ′)[h(x ′)]t

and

∂t [{h t.∼ h′}(x)]t = −µ
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∑
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)
.

Finally, across all the sites of the network

∂t [h t.∼ h′]t = −µ
∑
x ,x′

(
∆>(x , x ′) + ∆>(x ′, x)

)
[h(x)]t [h′(x ′)]t .
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But, this equation depends on the number of individuals in a certain state occupying a specific site x !

Hence, assuming [h(x)]t ≈ pt (x)[h]t , instead ∂t pt = −µ∆>pt

∂t [h t.∼ h′]t ≈ ∂t ‖pt‖2 [h]t [h′]t



PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL


∂t [h(x)]t = −µ

∑
x′

∆>(x , x ′)[h(x ′)]t

∂t [h t.∼ h′]t = −µ
∑
x ,x′

(
∆>(x , x ′) + ∆>(x ′, x)

)
[h(x)]t [h′(x ′)]t

But, this equation depends on the number of individuals in a certain state occupying a specific site x !

Hence, assuming [h(x)]t ≈ pt (x)[h]t , instead ∂t pt = −µ∆>pt

∂t [h t.∼ h′]t ≈ ∂t ‖pt‖2 [h]t [h′]t



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2ND ORDER

1st-order transition diagram

[S]t [I]t

∑
λ βλ[I λ∼ S]t

γ[I]t

2nd-order transition diagram

[S ω∼ S]t

[S ω∼ I]t [I ω∼ S]t

[I ω∼ I]t

∑ λ
β
λ [S

ω∼
S

λ∼
I] t

∑
λ β λ

[I λ∼
S ω∼

S]t

γ
[S
ω∼

I] t
γ[I ω∼

S]t

γ[I ω∼
I]t γ

[I
ω∼
I] t

β ω
[S ω∼

I]t β
ω [I

ω∼
S] t∑

λ β λ
[I λ∼

S ω∼
I]t ∑ λ

β
λ [I

ω∼
S
λ∼

I] t

∂
t
‖p

t‖
2

[S
]2 t
δ
ω

,t.

∂t ‖pt‖2 [S]t [I]tδω,t.

∂t ‖pt‖2 [I]t [S]tδω,t.

∂
t ‖

p
t ‖

2
[I] 2t

δ
ω

,t.



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2ND ORDER



∂t pt = −µ∆>pt

∂t [S]t = −
∑
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1ST-ORDER MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS



∂t pt = −µ∆>pt

∂t [S]t = −
(
βc. k

|N |
+ βt. ‖pt‖2

)
[S]t [I]t + γ[I]t

∂t [I]t =
(
βc. k

|N |
+ βt. ‖pt‖2

)
[S]t [I]t − γ[I]t

The system undergoes a transcritical bifurcation when
χ(p∞) = 1. Here, χ(p) =

(
βc. k

|N| + βt. ‖p‖2
)

|N|
γ

and
p∞ is the unique probability distribution solving the equa-
tion ∆>p∞ = 0.

1
(p )

[I]



THE EPIDEMIC THRESHOLD FOR VARYING TRANSPORT-INFECTION RATE

Overall, the transport process effectively amounts to βt.

βc. ‖p∞‖2 |N | additional contacts to the average
individual and lowers the epidemic threshold.

1st-order mean-field Stochastic simulation
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NON-LOCAL, FRACTIONAL TRANSPORT DYNAMICS

From a statistical point of view, human mobility patterns are characterised by heavy-tailed distributed
jump-lengths, leading to non-local dynamics (→ Lévy flights).

In this case we consider transport dynamics governed by a fractional Laplacian with exponent α.

1st-order mean-field Stochastic simulation
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TOWARDS A MORE REALISTIC TRANSPORT PROCESS: NON-MARKOVIAN DYNAMICS

Unlike trajectories of a random walk, those underlying human mobility tend to be inertial. Yet, such
dynamics are inherently non-Markovian.

However: Given a random walk (Xn)n on some network G with k -step memory, there exists a Markovian
random walk (X̂n)n on a higher-order network structure Ĝ together with a projection Π such that the
process on the original network and the one on the higher-order network under the projection ((Π(X̂n))n)
have the same one-dimensional distributions.

In the mean-field description:

 ∂t pt = −µ∆>pt

∂t [h t.∼ h′]t ≈ ∂t ‖pt‖2 [h]t [h′]t
−→

 ∂t p̂t = −µ∆̂>p̂t

∂t [h t.∼ h′]t ≈ ∂t ‖[Π]p̂t‖2 [h]t [h′]t
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TOWARDS A MORE REALISTIC TRANSPORT PROCESS: NON-MARKOVIAN DYNAMICS

For walks with one-step-memory, an alternative (and ultimately equivalent) construction involves pass-
ing to the adjoint network:

G

∗−→

Ĝ = G∗

→ Markov-kernel:
κ̂( (ξ, ξ′)| (x , x ′)) = κ( ξ′| x ′, x) δξ,x′

→ projection: Π : (x , x ′) 7→ x ′

In such a setup, we have inertial dynamics if κ( x | x ′, x) < κ( x ′′| x ′, x) for every x ′′ 6= x .



CONCLUSIONS

→ We have constructed an epidemic network model where the presence of a transport process gives
rise to a multiplex network structure.

→ We have derived a mean-field description up to second order and from the deduced how the trans-
port influences the epidemic threshold, under local as well as non-local (fractional) dynamics.

→ We have shown how we can incorporate more realistic non-Markovian mobility models into the
mean-field description.

� C. Kuehn and J. Mölter (2022). “The influence of a transport process on the epidemic threshold”. J. Math. Biol.
accepted. arXiv: 2112.04951 [nlin.AO]

https://arxiv.org/abs/2112.04951


Thank you!
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