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TRANSPORT PROCESSES ACCELERATE EPIDEMIC DYNAMICS

Public transport transiently brings together people
in a confined space and as such provides a gen-
uine risk to spread contagions.

Source: Jeffrey Young | zydeagsika


https://www.pexels.com/@zydeaosika-2261055

TRANSPORT PROCESSES ACCELERATE EPIDEMIC DYNAMICS

Public transport transiently brings together people
in a confined space and as such provides a gen-
uine risk to spread contagions.

When modelling an epidemic, one classically con-
siders the epidemic dynamics on a static social net-
work. In contrast, transport dynamically generates
transient connection between people.

— How can we incorporate transport into the classi-
cal epidemic network models and quantify its effect
e.g. on the epidemic threshold?

Source: Jeffrey Young | zydeagsika


https://www.pexels.com/@zydeaosika-2261055
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Epidemic (multilayer) network (N, {£%, & })

Multiplex structure of simple networks, with a static
bottom (“community”) and a dynamic top (“trans-
port”) layer

— standard epidemic dynamics (SIS, SIR, ...)
across the entire multiplex

AN EPIDEMIC NETWORK MODEL INCORPORATING TRANSPORT

Transport network (X, .A)

Simple, static network

— independent Poissonian random walks of the in-
dividuals from the population N

— the event that two individuals occupy the same
site generates a link between them in £t



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

1st-order transition diagram
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MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

1st-order transition diagram 2nd.order transition diagram
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MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

1st-order transition diagram 2nd.order transition diagram
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PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MICROSCOPIC LEVEL

Let H and X[ denote the health and location of individual n at time t. If hy(x)
is the number of individuals in state h occupying site x at time ¢, then, for 7 > 0
sufficiently small,

Brer(X) = he(X) + > (5x,xpw - 5x,xp) Op,H-

n



PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MICROSCOPIC LEVEL

Let H and X[ denote the health and location of individual n at time t. If hy(x)
is the number of individuals in state h occupying site x at time ¢, then, for 7 > 0
sufficiently small,

Brer(X) = he(X) + > (5x,xpw - 5x,xp) Op,H-

n

With that, if {h b h }+(x) is the number of links between individuals in state h
and h’ occupying site x at time t,

{h & W }e(x) = he(x) (H(X) = Sp )




PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL

The generator of the random walk on the transport network is the Laplacian A = 1 — P so that

P X, =X | X{ =xAH =h] =6y —prAx,x")(1+0(r)).



PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL

The generator of the random walk on the transport network is the Laplacian A = 1 — P so that
P X, =X | X{ =xAH =h] =6y —prAx,x")(1+0(r)).

Hence, in expectation and the limit = — 0,

B [0l = —p Y AT X)X

x!

and

O [{h~ W} = —p ([h’(x)], Do AT+ ()l Y AT (x, X’)[h’(X’)]t> :

XI
Finally, across all the sites of the network

& W= —p > (AT X)+ AT (X)) I ()

x,x!



PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL

O [h0)]e = —p Y AT (x, X")[h(X)];

x!

O lh & W= —p > (AT X) + AT (¢, 0) (L ()

x,x’

But, this equation depends on the number of individuals in a certain state occupying a specific site x!



PAIR-MOTIF DYNAMICS DUE TO TRANSPORT — MACROSCOPIC LEVEL

O [h0)]e = —p Y AT (x, X")[h(X)];

x!

O lh & W= —p > (AT X) + AT (¢, 0) (L ()

x,x’

But, this equation depends on the number of individuals in a certain state occupying a specific site x!

Hence, assuming [h(x)]; ~ p(x)[h];, instead

Ot Pt = —pA T py
3 [h~ Wi = 8 |pilf? [ Ne



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

1st-order transition diagram 2nd.order transition diagram
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MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

O pr= —pA " py
or ISl = — Zjﬁ*[s A e+ 11
o= BMS A 1l — A1l
A
o [S R 8] = —2; BNS X S A M+ 298 & M+ o [|prll® [ST o
o8 RN =Y (282N —-128AN) - B S 2N
A
— (1820 =12 1) + &t llpel® [Sklledess.

NN =2 (Z BRS A1+ 8[S & I]r) &,
A

+ O llpell? U7 8.



MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS UP TO 2N° ORDER

Assume the community layer of the epidemic
O pr= —pA " py network is k-regular and let

B[Sl == > B8NS A M+l .
Ce 2; ' ' w={k ifw=c.

2 .
ol = 3 BNS A Ml — Al el V] fw=t
A

OS2 Sl=-2> BNS XS A +29[S X I+ & |lp® [So., ~ Foraclosure
. « at the level of pairs, use
o8 RN =Y (282N —-128AN) - B S 2N e
A w t
[S~ i = —=[S]ll:
—y (8201210 + o 1o [SHlildw V1
and
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1ST-ORDER MEAN-FIELD DESCRIPTION FOR SIS-EPIDEMIC DYNAMICS

O pr = —pA T py
o1 IS = - (Bﬁ L gt ||p,H2) (Il + {1

o [l = (ﬁﬁ L gt ||Pt||2) (Il — A1k

[

The system undergoes a transcritical bifurcation when
X(ps) = 1. Here, x(p) = (8% iy + 8% [IplI?) 1 and 1'
Pso is the unique probability distribution solving the equa-
tion AT poo = 0.




THE EPIDEMIC THRESHOLD FOR VARYING TRANSPORT-INFECTION RATE

t.
Overall, the transport process effectively amounts to g—c |lps |I? | V| additional contacts to the average
individual and lowers the epidemic threshold.

18torder mean-field Stochastic simulation
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NON-LOCAL, FRACTIONAL TRANSPORT DYNAMICS

From a statistical point of view, human mobility patterns are characterised by heavy-tailed distributed
jump-lengths, leading to non-local dynamics (— Lévy flights).

In this case we consider transport dynamics governed by a fractional Laplacian with exponent «.

18t-order mean-field Stochastic simulation
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TOWARDS A MORE REALISTIC TRANSPORT PROCESS: NON-MARKOVIAN DYNAMICS

Unlike trajectories of a random walk, those underlying human mobility tend to be inertial. Yet, such
dynamics are inherently non-Markovian.



TOWARDS A MORE REALISTIC TRANSPORT PROCESS: NON-MARKOVIAN DYNAMICS

Unlike trajectories of a random walk, those underlying human mobility tend to be inertial. Yet, such
dynamics are inherently non-Markovian.

However: Given arandom walk (X), on some network G with k-step memory, there exists a Markovian
random walk ()A(n),7 on a higher-order network structure G together with a projection 1 such that the
process on the original network and the one on the higher-order network under the projection ((M(Xx))n)
have the same one-dimensional distributions.

In the mean-field description:

O pr = —pA T py O pr = —pAT py
—
B [h~ W'l ~ o lpil|? (LM By [h ~ Wy = 8 |IIMIPel1? [lelH 1



TOWARDS A MORE REALISTIC TRANSPORT PROCESS: NON-MARKOVIAN DYNAMICS

For walks with one-step-memory, an alternative (and ultimately equivalent) construction involves pass-
ing to the adjoint network:

* ® o — Markov-kernel:
- . >0 RUEE)] 06, X)) = w(€] X', %) 8 0
— projection: M : (x, x") — x’

g G=g*

In such a setup, we have inertial dynamics if (x| X', X) < =(x”'| x’, x) for every x"" # x.



CONCLUSIONS

— We have constructed an epidemic network model where the presence of a transport process gives
rise to a multiplex network structure.

— We have derived a mean-field description up to second order and from the deduced how the trans-
port influences the epidemic threshold, under local as well as non-local (fractional) dynamics.

— We have shown how we can incorporate more realistic non-Markovian mobility models into the
mean-field description.

ﬁ C. Kuehn and J. Mélter (2022). “The influence of a transport process on the epidemic threshold”. J. Math. Biol.
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